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Abstract. This paper addresses the issue of the optimal flow allocation in general supply chains.
Our basic observation is that a distribution channel involving several reselling steps for a particular
product can be viewed as a route in a supply chain network. The flow of goods or services along
each route is influenced by the customer’s demand, described by the corresponding utility functions,
and prices charged at each node. We develop an optimization algorithm based on the primal-dual
framework and the Newton’s step that computes optimal prices at each node (dual problem) and then
computes the optimal flow allocation (primal problem) based on these prices. Our main contribution
is a discovery that the Newton’s step leads to a partially decentralized algorithm which is a first step
toward a decentralization schema for computing optimal prices.
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1. Introduction

This paper addresses the issue of the optimal flow allocation in general supply
chains. We view the supply chain optimization problem as an optimal allocation
of available capacities of the facilities involved in the supply chain network to the
customers of the supply chain. The performance measure is then chosen such that
the result of the optimization, optimal flow allocation, strikes the right balance
between profit maximization and customer satisfaction.

A complex supply chain structure makes centralized decision making imprac-
tical. Complete information is difficult to obtain, and often fierce competition leads
to situations where companies hesitate to reveal sensitive information. Even if
perfect information was available, the computational complexity of a centralized
decision maker for a general supply chain would be enormous. An important fea-
ture of our approach is that it provides an approach toward a practical distributed
optimization algorithm.

Supply chain management, as defined in [5], is “... a connected series of activit-
ies which is concerned with planning, coordinating and controlling materials, parts,
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Figure 1. Sequential multi-echelon system.

and finished goods from supplier to customer. It is concerned with two distinct
flows (material and information) through the organization.” There is growing re-
search devoted to the modeling of supply chains. A comprehensive overview of
recent developments can be found in [1] and [5].

From the inception of the supply chain research, it was realized that supply
chain management is a distributed problem [4]. In this work, Clark and Scarf out-
lined a multi-echelon system that can be sequential, as shown in Figure 1, or have
a tree-like structure, as in Figure 2. The boxes in Figure 2 represent facilities and
arrowed lines indicate a downward flow of material. Clark and Scarf considered a
centralized decision maker with a finite planning horizon and perfect information.
In their analysis they also assumed that demand originates at the lowest level and
at no other point in the system. The holding and shortage costs, at any level, are
functions of the inventory at the current level plus all other inventory at lower
levels or in transit to a lower level. These assumptions are characteristic of a multi-
echelon system. An additional assumption was that each echelon backlogs excess
demand. For this multi-echelon system, Clark and Scarf obtained an optimal in-
ventory replenishment policy. They used a dynamic programming approach. This
optimal policy has been the foundation for later analyses of multi-echelon systems.

Lee and Whang [8] extended this work in several significant ways. First, they
realized that decentralization of the decision making is the necessary component
of a realistic model of a modern enterprise, where on-site managers are responsible
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Figure 2. Tree-structured multi-echelon system.

for the decisions they make. Second, Lee and Whang showed that decentralization
of the decision making implies decentralization of the information: much of the
information relevant to a particular site is not shared due in part to the large quantity
of information and/or security reasons. Third, the authors introduced the idea of
performance measure alignment. Although the importance of the right performance
measures for the optimal behavior of a supply chain was emphasized in [2], Lee
and Whang’s contribution is that they showed how a performance measurement
scheme (corporate rules) acts as an incentive mechanism that aligns the interests of
the on-site managers with the overall performance of the supply chain. The prop-
erties of such performance measurement schemes are cost conservation, incentive
compatibility, and informational decentralizability. Lee and Whang showed that the
optimal multi-echelon inventory management policy of Clark and Scarf satisfies
these requirements with minor assumptions.

Recent years witnessed a surge of interest in modeling and analysis of supply
chains that have a general topology. There are several reasons for this. As mar-
kets and technologies become more dynamic, companies, striving for competitive
advantage, envision their supply chains as means for achieving this advantage.
This fact together with the advances in information technologies (e.g., commu-
nication, data mining) and transportation technology (e.g., overnight delivery) lead
to appearance of larger supply chains and of more sophisticated topology. Also
heightened customer expectations require introducing loops into supply chains due
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Figure 3. General supply chain.

to return of merchandise. Figure 3 gives an example of such a supply chain. Flow
of material in Figure 3 is not necessarily downward, as shown in Figures 1 and
2. In this paper we extend the network configuration considered in [4] and [8] to
include a general supply chain topology.

Our approach towards modeling of the general supply chain is based on the
research done in the area of the pricing in the Internet [6]. In this work, Kelly
considers end-to-end connections in the Internet and uses an optimization schema
based on the Lagrange relaxation technique. He introduces a centralized optimiz-
ation problem of maximizing a sum of users’ utility functions subject to capacity
constraints at the resources of the network. He then shows that if each user chooses
an increasing, strictly concave and continuously differentiable utility function (this
case corresponds to elastic traffic [10]), the overall optimal flows satisfy the pro-
portional fairness criterion. In a later paper, Kelly et al. [7] developed decentral-
ized gradient algorithms for computing the optimal flows over the Internet and
shadow prices for pricing of bandwidth and proved convergence using appropriate
Lyapunov functions.

The present work is, in the most part, concerned with the adaptation of Kelly’s
approach to the realm of distributed supply chains. Our basic observation is that a
distribution channel involving several reselling steps for a particular product can be
viewed as a route in a supply chain network. The flow of goods or services along
each route is influenced by the customer’s demand, described by the corresponding
utility functions, and prices charged at each node. We also expand the classic multi-
echelon inventory management approach to consider customer behavior. Instead of
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assuming a given demand, our approach is to incorporate customer satisfaction
through customer utility functions. We develop an optimization algorithm based
on the primal-dual framework and the Newton’s step that computes optimal prices
at each node (dual problem) and then computes the optimal flow allocation (primal
problem) based on these prices. Our main contribution is a discovery that Newton’s
step leads to a decentralization schema for computing optimal prices. Although the
algorithm developed here is partially decentralized, the approach has a potential
for development of a fully decentralized algorithm. Further research is needed to
reach this goal.

The rest of the paper is organized as follows. In Section 2, we introduce the
notation used in the paper and formulate the primal centralized optimization prob-
lem. Section 3 presents the primal-dual framework for solving the optimization
problem. In particular, the corresponding Lagrangian is constructed, and the dual
problem based on this Lagrangian is formulated. A numerical algorithm for solving
the dual problem is developed in Section 4. Computational results are presented in
Section 5. Finally, Section 6 discusses directions for future research.

2. Model

Let a general supply chain be represented by a network G(N ,A), where N is a set
of nodes and A is a set of arcs. Define a route r to be a non-empty ordered subset
of N . We interpret a route r to consist of the sequence of nodes in the supply chain
associated with a distribution channel for a particular product. We assume that each
route is unique, so there can be no more than one route passing through the same
set of ordered nodes (i.e. the routing problem has been solved a priori). We let S

be the set of all routes, and let xr be the average rate of delivery of a product along
route r ∈ S. For example, if τ is the time between a customer order and delivery
of m units of a product r, then xr = m/τ.

We adopt a philosophy that supply chain performance should be measured in
terms of the degree of customers’ satisfaction. A customers’ satisfaction is charac-
terized by a utility function U(x) = ∑

r∈S Ur(xr).

We assume that Ur(xr) is strictly concave and monotonically increasing. This
type of utility function corresponds to a customer behavior characterized by a
tolerance to delays and decreasing marginal improvement in satisfaction due to
incremental increases in the rate. Later in this paper we assume the utility func-
tion has a logarithmic form, Ur(xr) = wr log(xr) for wr a positive constant. A
logarithmic form was used by Kelly [6] in his Internet pricing framework, and is
a special case of an increasing strictly concave continuously differentiable utility
function, which corresponds to elastic traffic [10]. We also assume that each node
i of the supply chain has a throughput capacity Ci .

The centralized supply chain problem can now be stated, as maximizing cus-
tomer satisfaction of delivery rate of products subject to capacity constraints.
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Figure 4. Network for Example 1.

PROBLEM 1. (Centralized Primal).

max
x�0

∑
r∈S

Ur(xr ) (1)

subject to Ax � C

where x = (x1, ..., x|S|), A is an |N | × |S| matrix with the ir-th element defined
as follows

Air =
{

1 if i ∈ r

0 otherwise
,

and vector C = (Ci|i ∈ N ) where Ci is a given throughput capacity of node i.

Note that concavity of Ur(xr) ensures that an optimal solution exists.

EXAMPLE 1. Consider the network shown in Figure 4.

The route assignment matrix for this network, with two nodes and three routes,
is

A =
[

1 1 0
1 0 1

]

and the capacity vector is

C =
[

C1

C2

]
.

3. Primal/Dual Framework

In order to analyze Problem 1, we proceed as follows. Define the Lagrangian

L(x, η) =
∑
r∈S

Lr(xr , η) +
∑
i∈N

ηiCi, (2)

where η = (ηi |i ∈ N ) is the vector of Lagrange multipliers and for all routes
r ∈ S,

Lr(xr , η) = Ur(xr) −
∑
i∈N

ηiAirxr . (3)
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Then the Kuhn-Tucker conditions in the Lagrangian form state the necessary
conditions for vectors x = (xr |r ∈ S) and η = (ηi |i ∈ N ) to be locally optimal
[9]:

∂L(x, η)

∂xr

= ∂Ur(xr)

∂xr

−
∑
i∈N

ηiAir � 0 if xr = 0 (4)

= 0 if xr > 0 (5)

−∂L(x, η)

∂ηi

=
∑
r∈S

Airxr − Ci � 0 if ηi = 0 (6)

= 0 if ηi > 0. (7)

Written differently, conditions (4)–(7) imply that there exist optimal vectors
x̄ = (x̄r |r ∈ S) and η̄ = (η̄i|i ∈ N ) that satisfy

x̄ � 0, η̄T A � ∇xU(x̄), (∇xU(x̄) − η̄T A)x̄ = 0 (8)

η̄ � 0, Ax̄ � C, η̄T (Ax̄ − C) = 0. (9)

From relations (8) and (9), we interpret the quantity ηi as the price per unit flow
through node i, and ηT A as a vector of prices per unit flow for each route.

3.1. DUAL PROBLEM

We use the Lagrange relaxation technique [3] for the Lagrangian in (2). The dual
problem of optimization associated with Problem 1 is as follows:

PROBLEM 2. (Centralized Dual).

max
η�0

g(η)

where

g(η) := inf
x�0

{
−
∑
r∈S

Ur(xr) +
∑
r∈S

∑
i∈N

ηiAirxr −
∑
i∈N

ηiCi

}
. (10)

In order to proceed further, we need to specify the utility functions Ur(xr ).

As we discussed earlier, logarithmic utility functions possess nice properties that
simplify the derivations:

Ur(xr) = wr log xr, r ∈ S, (11)
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where wr’s are positive constants. The analytical expression for g(η) can be ob-
tained by finding the vector

x̄(η) = arg min
x>0

{
−
∑
r∈S

Ur(xr) +
∑
r∈S

∑
i∈N

ηiAirxr −
∑
i∈N

ηiCi

}
, (12)

and then substituting its entries x̄r into (10). The following observation simplifies
the derivation and justifies the choice of the utility function (11). Observe that
Ur(0) = −∞ and ∂Ur(xr)/∂xr |xr=0 = wr/xr |xr=0= ∞ and thus values xr = 0,
r ∈ S can not be considered as candidates for the optimal solution. Also observe
that the expression in braces in (12) is the negative of Lagrangian (2). Then from
(5), each entry of this vector is

x̄r (η) = wr∑
i∈N

ηiAir

. (13)

Substitute (11) and (13) into (10) to get

g(η) =
∑
r∈S

wr log

(∑
i∈N

ηiAir

)
−
∑
i∈N

ηiCi − const, (14)

where the constant term is const = ∑
r∈S(wr log wr − wr). In what follows, we

drop the constant term and consider Problem 2 with the objective function

g(η) =
∑
r∈S

wr log

(∑
i∈N

ηiAir

)
−
∑
i∈N

ηiCi. (15)

In general, this problem can be solved in a centralized manner. This assumes
existence of a certain central agent that possesses all the information about the sup-
ply chain and performs the computation. However, such an agent might not exist
in a supply chain. Thus the computation of the optimal prices must be distributed
among the nodes.

REMARK 1. Observe that g(η) is not decomposable by node because of the sum-
mation over all routes. However, the gradient of g(η), ∇g(η) = (∂g(η)/∂ηi|i ∈ N ) ,

is decomposable. The i-th entry of ∇g(η) is given by

∂g(η)

∂ηi

=
∑
r∈Si

wr∑
j∈N

ηjAjr

− Ci, i ∈ N . (16)

where Si is the set of routes passing through node i. Equation (16) suggests that a
decentralized gradient-based algorithm can be developed for solving Problem 2.
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4. Algorithm

In this section we develop a distributed numerical algorithm based on the Newton’s
step for solving dual Problem 2. First we decompose the gradient (16) into two
parts: ∇g(η) = ∇g̃(η) − C, where, by definition,

∇g̃(η) :=

∑

r∈Si

wr∑
j∈N

ηjAjr

|i ∈ N


 (17)

and C := (Ci|i ∈ N ) . Next we define the Hessian of g(η) to be the symmetric
negative-definite matrix H(η) with each entry, i, j ∈ N :

Hij (η) = ∂2g(η)

∂ηi∂ηj

= ∂ (∇g(η))i

∂ηj

= −
∑

r∈Si∩Sj

wr(∑
k∈N

ηkAkr

)2 . (18)

Notice that the constant C portion of the gradient (16) is not present in the Hessian
(18).

THEOREM 1. Given ∇g̃(η) and H(η) defined above, the following identity holds

H−1(η)∇g̃(η) = −η, (19)

where H−1(η) is the inverse of H(η). It is assumed that H−1(η) exists.
Proof. Observe that the gradient of g(η) can be written in matrix form as follows

∇g(η) = A
(
diag

(
AT η

))−1
w − C = ∇g̃(η) − C, (20)

where diag
(
AT η

)
is an |N | × |N | diagonal matrix and the vector AT η is along the

main diagonal, yielding

∇g̃(η) = A
(
diag

(
AT η

))−1
w. (21)

Also the Hessian H(η) in matrix form is

H(η) = −A
(
diag

(
AT η

))−2
diag(w)AT . (22)

Now, we would like to prove identity (19) or, which is the same, we need to show
that

∇g̃(η) = −H(η)η. (23)

But

−H(η)η = A
(
diag

(
AT η

))−2
diag(w)AT η

= A
(
diag

(
AT η

))−1 (
diag

(
AT η

))−1
diag

(
AT η

)
w

= A
(
diag

(
AT η

))−1
w. (24)

Compare (24) and (21) to infer (23).
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EXAMPLE 2. We continue with Example 1. From (15),

g(η) = w1 log (η1 + η2) + w2 log (η1) + w3 log (η2) −
2∑

i=1

ηiCi. (25)

The gradient of g(η) in (25) is

∇g(η) =
(

∂g(η)

∂η1
,
∂g(η)

∂η2

)
=
(

w1

η1 + η2
+ w2

η1
− C1,

w1

η1 + η2
+ w3

η2
− C2

)
(26)

and the Hessian of it is as follows

H (η) = −
[

w1
(η1+η2)

2 + w2
η2

1

w1
(η1+η2)

2

w1

(η1+η2)
2

w1

(η1+η2)
2 + w3

η2
2

]
. (27)

The inverse of Hessian in (27) is given as follows

H−1(η) = 1

det H

[
H22(η) −H12(η)

−H12(η) H11(η)

]
, (28)

where Hij (η), i, j = 1, 2 is given by (18) and (27), and the determinant of H is

det H = H11H22 − (H12)
2

=
(

w1

(η1 + η2)
2 + w2

η2
1

)(
w1

(η1 + η2)
2 + w3

η2
2

)
−
(

w1

(η1 + η2)
2

)2

= w1

(η1 + η2)
2

w3

η2
2

+ w2

η2
1

w1

(η1 + η2)
2 + w2

η2
1

w3

η2
2

. (29)

From (17) and (28),

H−1(η)∇g̃(η) = 1

det H

[
H22(η) (∇g̃(η))1 − H12(η) (∇g̃(η))2

−H12(η) (∇g̃(η))1 + H11(η) (∇g̃(η))2

]
. (30)

We carry out the calculation of the first term in the square brackets explicitly

H22(η) (∇g̃(η))1 − H12(η) (∇g̃(η))2

= −
(

w1

(η1 + η2)
2 + w3

η2
2

)(
w1

η1 + η2
+ w2

η1

)
+ w1

(η1 + η2)
2

(
w1

η1 + η2
+ w3

η2

)

+ w1

(η1 + η2)
2

w1

η1 + η2
+ w1

(η1 + η2)
2

w3

η2

= − w1

(η1 + η2)
2

w2

η1
− w3

η2
2

w1

η1 + η2
− w3

η2
2

w2

η1
+ w1

(η1 + η2)
2

w3

η2

= − w1

(η1 + η2)
2

w2

η1
− w3

η2
2

w2

η1
− w1

(η1 + η2)
2

w3

η2
2

η1

= −η1

(
w1

(η1 + η2)
2

w2

η2
1

+ w3

η2
2

w2

η2
1

+ w1

(η1 + η2)
2

w3

η2
2

)
. (31)
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Note that (29) and (31) imply that

1

det H

(
H22(η) (∇g̃(η))1 − H12(η) (∇g̃(η))2

) = −η1. (32)

It can be also shown that

1

det H

(−H12(η) (∇g̃(η))1 + H11(η) (∇g̃(η))2

) = −η2. (33)

Identities (30), (32), and (33) imply (19). This illustrates the application of
Theorem 1.

REMARK 2. Theorem 1 suggests a partially distributed algorithm with the fol-
lowing Newton step

η
(t+1)
i = η

(t)
i + η

(t)
i + H−1

i

(
η(t)
)
C, i ∈ N , (34)

where H−1
i (η) is the i-th row of H−1(η). Notice that the second term in (34)

follows from identity (19). If an approximation of the last term in (34) can be
developed so that it depends on η

(t)
i only, then a fully distributed algorithm can be

achieved. This is a subject of further research.

Observe that Theorem 1 assumes that the inverse of the Hessian H(η) exists.
At the same time, (22) suggests that the invertibility of H(η) depends on the
invertibility of A. We state the obvious proposition without a proof.

PROPOSITION 1. Hessian (22) has an inverse if and only if A has a right inverse.

Note that Proposition 1 implies that the number of rows of A (nodes of the
network) must be less than the number of columns (routes). The Gauss–Jordan
procedure can be applied in order to assure the invertibility of A. Alternatively,
by adding dummy nodes or routes the original network can be transformed into a
network with invertible A. This must be done before running the algorithm. We
also note that Proposition 1 refers to the structural invertibility of H(η). There
might be values of ηt while running the algorithm such that H(ηt) is not invertible.
Special care must be taken in this case, and on-going research is investigating ways
to assure invertibility.

We are now ready to state the algorithm. It is assumed that the vector of through-
put capacities C, and vector H−1

i

(
ηt
)

are known to every node. Then, for each node
i :
Algorithm (Distributed Dual)

Initialization Initialize: η0
i > 0.

Step 1 Compute vector H−1
i

(
η(t)
)
C
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Table 1. Parameter values for Numerical
Example 1

Parameter Numerical value

wr, r = 1, 2, 3 1

Ci, i = 1, 2 1

Initial point η0 [1, 1]

Stopping criterion ε 10−3

Step 2 Set the next point to

η
(t+1)
i = η

(t)
i + η

(t)
i + H−1

i

(
η(t)
)
C, i ∈ N ,

Step 3 Check the stopping criterion. If it is satisfied, stop. Otherwise, go to Step 1.

The convergence proof of this algorithm is the same as the convergence proof
of the Newtonian algorithm and can be found elsewhere [3].

5. Computational Results

In this section we present the computational results of the run of the algorithm on
two examples. The first example has been introduced in Example 1. The second
sample is derived from the real supply chain of the HP DeskJet production facility
presented in [11]. We performed several tests using the Distributed Dual Algorithm
(DDA) presented in Section 4, standard Newton algorithm, and Matlab constraint
optimization function fmincon. The comparison shows that DDA converges to
the same solution as the standard Newton algorithm. This solution is within a
predefined numerical accuracy interval from the true optimum obtained with the
Matlab routine fmincon. The comparison also shows that DDA exhibits linear rate
of convergence of the standard Newton algorithm which is slightly better than the
rate of convergence of fmincon.

5.1. NUMERICAL EXAMPLE 1

The numerical values in Table 1 provide the parameters used in this example.
Performance results of the three algorithms are presented in Table 2. One can

observe that both DDA algorithm and Standard Newton algorithm converge in
four iterations with four functions evaluation. The computed optimal value of η

within the tolerance interval from the true optimum η = 1.5. This demonstrates
that the DDA algorithm is comparable with Newton’s algorithm in computational
performance and moreover, has the potential to be distributed.
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Table 2. Performance Results for Numerical Example 1

Algorithm No. of No. of func. Final values Optimal

iterations evaluations of η flows x

DDA 4 4

[
1.499999975

1.499999975

] 


0.33

0.67

0.67




Standard Newton 4 4

[
1.499999975

1.499999975

] 


0.33

0.67

0.67




Matlab fmincon 2 9

[
1.5

1.5

] 


0.33

0.67

0.67




5.2. NUMERICAL EXAMPLE 2

Consider a supply chain shown in Figure 5. This is a simplified version of the HP
DeskJet printers supply chain (see [11]). HP DeskJet printer division is located
in Vancouver, Washington. This is a high volume, high production rate facility
with total factory cycle of about one week. The Vancouver division is connected
with its suppliers, most of which are other HP divisions, and the distribution cen-
ters, located in the US, Europe, and Asia. Overseas sales require localization, i.e.,
equipment of printers with the appropriate power supplies and manuals. Also they
lead to a significant transportation times between the factory and the distribution
centers (DCs) in Europe and Asia. Customers of HP (resellers) request a high level
of availability of the printers due to highly competitive market. In response, HP
decided to operate the three DCs in a make-to-stock mode, i.e., maintaining the
target inventories at the levels of the forecasted sales plus some safety stock. As
a consequence of the long transportation time, the European and Asian DC had to
keep high levels of safety stocks in order to respond to fluctuations in the demand
for the different versions of the printer.

In this paper, we consider the distribution process of this supply chain only.
Assume that there are two versions of the printer, AU and BU, that target the US
market, two versions, AE and BE, that target the European market, and one version,
AA, that targets the Asian market. Figure 6 shows the distribution network.

For the example on hand, the set of routes is as follows:

S =
{

(1, 2, 5), (1, 2, 6), (1, 3, 7), (1, 3, 8), (1, 4, 9),

(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (3, 7), (3, 8), (4, 9)

}
,
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Figure 5. HP DeskJet printer supply chain.

Figure 6. Distribution process graph.

and the route assignment matrix is:

A =




1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1




.
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Table 3. Parameter Values for Numerical Example 2

Parameter Numerical value

wr, r = 1, ...,13 70000

Ci, i = 1, ..., 9 [2000, 1500, 1500, 900, 600.6, 605.1, 600.7, 610.3, 581.4]

Initial point η0 [50, 50, 50, 50, 50, 50, 50, 50, 50]

Stopping criterion ε 10−3

Figure 7. Convergence of the distributed dual algorithm.

The problem parameters are given in Table 3.
The performance results are summarized in Table 4. The three algorithms con-

verged to very similar solutions, and DDA took the same amount of computation
as the standard Newton algorithm, which was less than the Matlab routine.

The values of η after each iteration of the Distributed Dual Algorithm are presen-
ted in Table 5 to illustrate the speed of convergence. The linear nature of the
convergence rate of the algorithm is shown in Figure 7. After only two iterations
the intermediate value is very close to the optimal solution. This implies that DDA
can be used for large supply chain systems.

6. Conclusions

We presented a primal-dual framework for computing optimal flow allocation in a
general supply chain. The main feature of our approach is that it leads to a practical
distributed algorithm. Numerical results show that the linear convergence of the
algorithm is the same as the centralized Newton algorithm. In order to reach com-
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Table 4. Performance Results for Numerical Example 2

Algorithm No. of No. of func. Final values Optimal

iterations evaluation of η flows x

DDA Algorithm 6 6




134.4928

103.3598

107.7218

85.2185

80.5025

78.8857

76.1043

72.6868

105.83997







388.0081651

366.3800650

219.8802743

221.0026696

219.9052858

222.2918349

215.0199347

294.2999998

289.0000008

318.6000004

380.7197244

384.0973281

380.7947160




Standard Newton 6 6




134.4928

103.3598

107.7218

85.2185

80.5025

78.8857

76.1043

72.6868

105.83997







388.0081651

366.3800650

219.8802743

221.0026696

219.9052858

222.2918349

215.0199347

294.2999998

289.0000008

318.6000004

380.7197244

384.0973281

380.7947160




Matlab fmincon 23 310




134.4919

103.3560

107.7304

85.2214

80.5079

78.8873

76.0921

72.6743

105.8379







388.0081651

366.3800650

219.8802743

221.0026696

219.9052858

222.2918349

215.0199347

294.2999998

289.0000008

318.6000004

380.7197244

384.0973281

380.7947160



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Table 5. Convergence of the distributed dual algorithm

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6




83.7070

74.2732

75.0307

70.8005

71.3623

70.9171

70.5950

69.6452

76.7348







117.5343

93.4966

95.9107

82.8263

82.4232

81.2524

79.9830

77.4963

98.1880







132.8836

101.9444

105.9138

85.1234

81.5760

80.0005

77.5714

74.2382

105.3795







134.4814

103.3327

107.6850

85.2166

80.5290

78.9124

76.1405

72.7234

105.8398







134.4928

103.3598

107.7217

85.2185

80.5025

78.8857

76.1043

72.6868

105.8399







134.4928

103.3598

107.7218

85.2185

80.5025

78.8857

76.1043

72.6868

105.8399




plete decentralization of the algorithm, we need to find a suitable approximation to
H−1(η). This is a topic for further research.
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